Answer:
32000atm
Explanation:
Using Boyle's law equation;
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (
V2 = final volume (L)
According to the question below:
P1 = 160.0 atm
P2 = 3.0 atm
V1 = 600L
V2 = ?
Using P1V1 = P2V2
160 × 600 = 3 × V2
96000 = 3V2
V2 = 96000/3
V2 = 32000atm
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
This reaction would produce salt and water- Sodium Sulphate and Water.
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
Answer:
0.0400M of KI
Explanation:
Molarity is an unit of concentration defined as the ratio between moles of solute and liters of solution.
When you add 10.0 mL of 0.10M KI and 15.0mL, total volume is:
25.0mL = <em>0.025L of solution</em>
<em />
And moles of KI are:
0.0100L × 0.10M = <em>0.00100 moles of KI</em>
<em />
Thus, molarity is:
0.00100 moles / 0.025L = <em>0.0400M of KI</em>
Answer:
The correct option is b
Explanation:
Firstly, the compound is ClF₃ and not ClF₃ClF₃. The name of the compound ClF₃ is chlorine trifluoride. It's electron geometry is trigonal bipyramidal (with the chlorine at the center and the atoms of the fluorine forming a triangular bipyramid around it) with a bond angle of 175° with an hybridization of sp³d.