Respuesta:
5 L
Explicación:
Paso 1: Información provista
- Presión inicial (P₁): 1,5 atm
- Volumen inicial (V₁): 20 L
- Presión final (P₂): 6 atm
Paso 2: Calcular el volumen final del gas
Si asumimos temperatura constante y comportamiento ideal, podemos calcular el volumen final del gas (V₂) usando la Ley de Boyle.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 1,5 atm × 20 L / 6 atm = 5 L
Answer:
<h2>67%</h2>
Explanation:
<h2>Thus the % composition of glucose by mass is carbon 40.0 % oxygen 53.3 % hydrogen 6.7 % in this way, the % composition by mass of any compound can be calculated provided that is formed is known. </h2>
Answer:
Whenever a force is applied to an object, causing the object to move, work is done by the force. ... Work can be either positive or negative: if the force has a component in the same direction as the displacement of the object, the force is doing positive work
<u>Answer:</u>
It is the expression of Charles' Law.
<u>Explanation:</u>
The given expression V1T2 = V2T1 is the formula for the Charles' Law.
A special case of an ideal gas is named as the Charles' Law. This law applies to ideal gases only which are at constant pressure.
According to this law, the volume of a fixed mass of a gas is directly proportional to its temperature and is given by:
V1T2 = V2T1