Answer:
Obtain the conversion factor by dividing the required yield (from Step 2) by the old yield (from Step 1). That is, conversion factor = (required yield)/(recipe yield) or conversion factor = what you NEED ÷ what you HAVE.
Explanation:
Hi!
When titrating Calcium and Water solution, if there is some CaCO3 in the solution, the following reactions may occur in acid solution:
CaCO₃ + H⁺ → Ca⁺² + HCO₃⁻
HCO₃⁻ + H⁺ ↔ H₂CO₃ → CO₂ (g) + H₂O
The bubbles are from CO₂ that is being developed from an acidic solution of CaCO₃
Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation: