Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
A magnet is any object that has a magnetic field. It attracts ferrous objects like pieces of iron, steel, nickel and cobalt. In the early days, the Greeks observed that the naturally occurring 'lodestone' attracted iron pieces. From that day onwards began the journey into the discovery of magnets.
These days magnets are made artificially in various shapes and sizes depending on their use. One of the most common magnets - the bar magnet - is a long, rectangular bar of uniform cross-section that attracts pieces of ferrous objects. The magnetic compass needle is also commonly used. The compass needle is a tiny magnet which is free to move horizontally on a pivot. One end of the compass needle points in the North direction and the other end points in the South direction.
The end of a freely pivoted magnet will always point in the North-South direction. The end that points in the North is called the North Pole of the magnet and the end that points South is called the South Pole of the magnet. It has been proven by experiments that like magnetic poles repel each other whereas unlike poles attract each other.
Answer:
Explanation:
F = 2.12 x 10⁻²⁶ / x²
Work done by electric field of nucleus
W = ∫ Fdx
= ∫2.12 x 10⁻²⁶ / x² dx
= 2.12 x 10⁻²⁶ ( - 1 / x )
= - 2.12 x 10⁻²⁶ ( 1/5 - 1 / 8 x 10⁻¹⁰ )
= - .265 x 10⁻¹⁶ J
1/ 2 x mv² = .5 x 1.67 x 10⁻²⁷ x 9 x 10¹⁰ - .265 x 10⁻¹⁶
= 7.515 x 10⁻¹⁷ - .265 x 10⁻¹⁶
=( .7515 - .265 )x 10⁻¹⁶
= .4865 x 10⁻¹⁶
.5 x 1.67 x 10⁻²⁷ x v² = .4865 x 10⁻¹⁶
v² = .5826 x 10¹¹
v² = 5.826 x 10¹⁰
v = 2.41 x 10⁵ m /s
b )
Let r be the closest distance
Potential at this point
2.12 x 10⁻²⁶ ( 1 / r )
Kinetic energy
= 0
Total energy = 2.12 x 10⁻²⁶ ( 1 / r )
Total energy at 5 m
= .5 x 1.67 x 10⁻²⁷ x 9 x 10¹⁰ + 0 ( potential energy at 5 m will be negligible as compared with that near the center )
= 7.515 x 10⁻¹⁷ J
So ,
2.12 x 10⁻²⁶ ( 1 / r ) = 7.515 x 10⁻¹⁷
r = 2.12 x 10⁻²⁶ / 7.515 x 10⁻¹⁷
= .282 x 10⁻⁹
= 2.82 x 10⁻¹⁰ m
c ) As electric field is conservative , no dissipation of energy takes place . Hence its speed at 5m on returning back to this point will be same as
3.00 x 10⁵ m /s
Answer:
W = 0
Explanation:
As the satellite moves in a circle the force is perpendicular to the path, therefore the work that is defined by
W = F. r = f r cos θ
Since the force and the radius are perpendicular, the angle θ = 90º and the cosine 90 = 0, therefore there is no work for the circular motion.
W = 0
Answer:
1 is the y intercept
Explanation:
the y intercept is where the line crosses the y axis