Answer:
people grow by the year sometimes it even by months
Decrease the amount of force applied
Answer:
Well a s the temperature increases, at a certain point called the Curie temperature, a magnet will lose its strength completely. So once the metal cools, its ability to attract magnets returns, though its permanent magnetism becomes weak. In general heat is the factor that has the most effect on permanent magnets.Explanation:
In the thermal equilibrium, the change in temperature is said to be zero in between the bodies. Thermal equilibrium is reached when both objects have the same temperature.
<h3>What is thermal equilibrium?</h3>
Thermal equilibrium is easily explained by the zeroth law of thermodynamics. If any two-body is at thermal equilibrium there is no change in the temperature of the body.
According to zeroth law if body A is in thermal equilibrium with body B and body B is in thermal equilibrium with C . So body A and C are also in thermal equilibrium.
In the thermal equilibrium, the net heat transfer is said to be zero in between the bodies.
Hence option A IS RIGHT. Thermal equilibrium is reached when both objects have the same temperature
To learn more about the thermal equilibrium refer to the link;
brainly.com/question/2637015
Answer:
1. b. The door is exerting a centripetal force on you that balances the centrifugal force of the turn.
2. b. There is no net force acting on the object.
Explanation:
1. This is because as you move to the right due to the centrifugal force of the turn, a corresponding centripetal force acts on you due to the door which does not allow you fall out of the car since,<u> the door is exerting a centripetal force on you that balances the centrifugal force of the turn. </u>
So, the answer is b
2. This is because, since the object moves at a constant speed and thus does not accelerate, no net force can act on it since, a net force would imply that the object accelerates. Note that a constant speed does not imply that no force acts on it. It only shows that the resultant or net force is zero since the object does not accelerate.
So, <u>there is no net force acting on the object. </u>
So, b is the answer.