Answer:
force on the wire of section cm will be 
Direction of force on the wire will be in south direction
Explanation:
We have given current in the wire i = 1 A
Magnetic field strength B = 0.6 T
We have to find the force on 1 cm section of the wire so l = 1 cm = 0.01 m
Force on the wire containing current is equal to


So force on the wire of section cm will be 
Direction of force on the wire will be in south direction
Explanation:
The x component of the resultant force is the sum of the x components of the individual forces.
Fₓ = 65.0 cos 30° − 20.0 sin 20° − 30.0
Fₓ = 19.5
The y component of the resultant force is the sum of the y components of the individual forces.
Fᵧ = 65.0 sin 30° − 20.0 cos 20°
Fᵧ = 13.7
The magnitude is found with Pythagorean theorem:
F² = Fₓ² + Fᵧ²
F² = (19.5)² + (13.7)²
F = 23.8
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
<h3>What is total internal reflection?</h3>
The term total internal reflection occurs when light is moving from a denser to a less dense medium such as from glass to air. This phenomenon occurs at the interface between the two media.
There are two conditions necessary for total internal reflection and they are;
1) Light must travel from a denser to a less dense medium
2) The angle of incidence in the denser medium must be greater than the critical angle.
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
Learn more about total internal reflection:brainly.com/question/13088998
#SPJ1
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>
Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 