At the entrance of most beaches, there is a bulletin board with notices about water conditions: maybe a faded sign warning about rip currents and a list of this week's tide tables. Most people pass them by without a second thought, but if you want to enter the ocean, it is important to know its movements, whether to avoid being caught in a riptide or to figure out when the waves will be at their best.
Hope this helps
<span>According to the formula :
</span><span>a=<span><span>ΔV / </span><span>ΔT
</span></span></span><span>When a body is moving with a uniform velocity, the acceleration is zero. That's it. You should remember, that velocity is not constant whereas speed is constant.</span>
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Given that force is applied at an angle of 30 degree below the horizontal
So let say force applied if F
now its two components are given as


Now the normal force on the block is given as



now the friction force on the cart is given as



now if cart moves with constant speed then net force on cart must be zero
so now we have




so the force must be 199.2 N
** Missing info: Lines per mm = 500 **
Ans: The wavelength is = λ = 1414.21 nm
Explanation:
The formula for diffraction grading is:
dsinθ = mλ --- (1)
Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°
Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm