The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N
The cheetah's speed is 100x and
The gazelle's speed is 80x + 70.
Set the two equations equal to each other:
100x = 80x +70 (then subtract 80x from both sides).
20x = 70 (then divide by 20).
X =3.5.
The cheetah catches the gazelle after 3.5
Water freezes at the freezing point to ice then melts to the melting turning it to liquid and vapor causing gas in precipitation
Answer:
A) The particle will accelerate in the direction of point C.
Explanation:
As we know that
potential at points A, B,C and D as V_A, V_B, V_C, V_D and it is clear from the question that
V_A>V_B>V_C
And we know that flow is always from higher to lower potential (for positive charge due to positive potential energy).
So the charge will accelerate from B toward C.
Hence, the correct option is A.