The final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated using the Charles law equation as follows:
V1/T1 = V2/T2
Where;
- V1 = initial volume
- V2 = final volume
- T1 = initial temperature
- T2 = final temperature
- V1 = 2L
- V2 = ?
- T1 = -25°C + 273 = 248K
- T2 = 273K
2/248 = V2/273
273 × 2 = 248V2
546 = 248V2
V2 = 546/248
V2 = 2.2L
Therefore, the final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L
Learn more about volume at: brainly.com/question/11464844
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
1. The answer is E.
2. I agree with your answers.
3. I also agree with your answers
Answer:
A
Explanation:
Iron has the ground state electronic configuration [Ar]3d64s2
Fe2+ has the electronic configuration [Ar]3d6.
In an octahedral crystal field, there are two sets of degenerate orbitals; the lower lying three t2g orbitals, and the higher level two degenerate eg orbitals. Strong field ligands cause high octahedral crystal field splitting, there by separating the two sets of degenerate orbitals by a tremendous amount of energy. This energy is much greater than the pairing energy required to pair the six electrons in three degenerate orbitals. Since CN- is a strong field ligand, it leads to pairing of six electrons in three degenerate orbitals
Answer:
abiotic things
abiotic things aren't living