Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,

0 = 9 - 4a
4a = 9

is the acceleration.
Calculating Coefficient of friction:


Compare the above equation

Cancel "m" common term in both L.H.S and R.H.S





Hence coefficient of friction is 0.229.
calculating force:


F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.
Producers to primary consumers to secondary consumers to tertiary consumers to carnivores
Answer:
The charge density in the system is 
Explanation:
To solve this problem it is necessary to keep in mind the concepts related to current and voltage through the density of electrons in a given area, considering their respective charge.
Our data given correspond to:

We need to asume here the number of free electrons in a copper conductor, at which is generally of 
The equation to find the current is

Where
I =Current
V=Velocity
A = Cross-Section Area
e= Charge for a electron
n= Number of free electrons
Then replacing,


Now to find the linear charge density, we know that

Where:
I: current intensity
Q: total electric charges
t: time in which electrical charges circulate through the conductor
And also that the velocity is given in proportion with length and time,

The charge density is defined as

Replacing our values


Therefore the charge density in the system is 
Answer: unless it's acted upon by an external force
Explanation: Newton first law of motion State that an object will continue in it state of rest or in motion, unless it is been acted upon by an external force