Answer:
Uses of various electromagnetic waves depend on their relative energy.
Explanation:
The electromagnetic spectrum is the term used by scientists to describe the entire range of light that exists from radio waves to gamma rays. Electromagnetic waves is a wave of alternating electric and magnetic fields. The electromagnetic spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength. The sun, earth, and other bodies radiate electromagnetic energy of varying wavelengths. Electromagnetic energy passes through space at the speed of light in the form of sinusoidal waves. The spectrum of waves is divided into sections based on wavelength. The shortest waves are gamma rays, which have wavelengths of 10^-6 microns or less. The longest waves are radio waves, which have wavelengths of many kilometers.
The application of various electromagnetic waves in science and technology depends on the energy of the wave. Electromagnetic waves that possess very high amount of energy are used in medical diagnosis, treatment of tumors, searching of baggage and detection of flaws in metal casting. Examples of such electromagnetic waves include gamma rays and xrays.
Some part of the electromagnetic spectrum possess energy enough to excite chemical bonds and produce spectra characteristic of certain functional groups in molecules. The ultraviolet and infrared rays fall into this category.
Some portion of the spectrum possesses very low energy and long wavelength and are mostly used for communication, mild medical diagnosis and resonance imaging/spectroscopy. Radio waves fall into this category.
Answer:
Tamoxifen is an irreversible, competitive inhibitor.
Explanation:
In order to binds to the active site of the estrogen receptor protein, tamoxifen have to compete with the other chemical compound, and inhibits the estrogen release, so it is a competitive inhibitor. Then, you said that when tamoxifen binds to the receptor, the protein is permanently deactivated, so it is also irreversible.
Answer:
2.
Explanation:
This should be right hopefully it is!
Calculate the molar mass of Ca3P2 in grams per mole or search for a chemical formula or substance.
Answer:
The concentration would be; 0.0038 μgmL
Explanation:
Half life, t1/2 = 68 minutes
Initial Conc. [A]o = 0.12/μgmL
Final Conc [A] = ?
Time. k = 340 minutes
ln[A] = ln[A]o - kt
t1/2 = ln2 / k
k = 0.693 / t1/2 = 0.693 / 68 = 0.01019
ln[A] = ln (0.12) - 0.01019 (340)
ln[A] = -2.1203 -3.4646
ln[A] = -5.5849
[A] = 0.00375 ≈ 0.0038 μgmL