Answer:
speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
initial kinetic energy = final kinetic energy

Explanation:
Since there is no external force on the system of two balls so here total momentum of two balls initially must be equal to the total momentum of two balls after collision
So we will have
momentum conservation along x direction

now plug in all values in it

so we have

similarly in Y direction we have

now plug in all values in it

so we have


now from 1st equation we have



so speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
Also we know that since this is an elastic collision so here kinetic energy is always conserved to
initial kinetic energy = final kinetic energy


Answer:12,352 cal
Explanation:
Given
to change 16 gm ice at 
First we need to take ice to
then change its state to water and then raises water temperature from 0 to
.
After it change water phase to steam and then raise its temperature to 
+
Q=12,352 cal
Very sad to hear from her
1) In any collision the momentum is conserved
(2*m)*(vo) + (m)*(-2*vo) = (2*m)(v1') + (m)(v2')
candel all the m factors (because they appear in all the terms on both sides of the equation)
2(vo) - 2(vo) = 2(v1') + (v2') => 2(v1') + v(2') = 0 => (v2') = - 2(v1')
2) Elastic collision => conservation of energy
=> [1/2] (2*m) (vo)^2 + [1/2](m)*(2*vo)^2 = [1/2](2*m)(v1')^2 + [1/2](m)(v2')^2
cancel all the 1/2 and m factors =>
2(vo)^2 + 4(vo)^2 = 2(v1')^2 + (v2')^2 =>
4(vo)^2 = 2(v1')^2 + (v2')^2
now replace (v2') = -2(v1')
=> 4(vo)^2 = 2(v1')^2 + [-2(v1')]^2 = 2(v1')^2 + 4(v1')^2 = 6(v1')^2 =>
(v1')^2 = [4/6] (vo)^2 =>
(v1')^2 = [2/3] (vo)^2 =>
(v1') = [√(2/3)]*(vo)
Answer: (v1') = [√(2/3)]*(vo)
Dust particles fall down when we hit the carpet or a piece of cloth with a stick because it loses it inertia of rest and move forward, but dust particles fall down in absence of the carpet.