1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
4 years ago
10

A certain baryon (a subatomic particle) has a charge q > 0. The baryon moves with a kinetic energy K in a circular path of ra

dius R in the presence of a uniform magnetic field of magnitude B. (Use any variable or symbol stated above as necessary.) (a) What is the speed of the baryon? Assume the speed is low compared to the speed of light. (b) What is the mass of the baryon?
Physics
1 answer:
Licemer1 [7]4 years ago
7 0

Answer:

v=\frac{2K}{RqB}

m=\frac{(RqB)^2}{2K}

Explanation:

The formula for kinetic energy <em>K</em> of a particle of mass <em>m</em> moving at velocity <em>v</em> is K=\frac{mv^2}{2} and the formula for the Lorentz force <em>F</em> experimented by a particle of charge <em>q </em>and velocity <em>v</em> under a magnetic field <em>B</em> is (asuming <em>v</em> and <em>B</em> are perpendicular) F=qvB.

Since the particle would be moving in circles, this force would be a centripetal force given by F_{cp}=ma_{cp}=\frac{mv^2}{R}, where <em>R</em> is the radius of the trajectory.

Then we have (<em>q, K, R</em> and <em>B</em> would be what we know):

F=F_{cp}

qvB=\frac{mv^2}{R}=\frac{2K}{R}

v=\frac{2K}{RqB}

And:

m=\frac{2K}{v^2}=\frac{2K(RqB)^2}{(2K)^2}=\frac{(RqB)^2}{2K}

You might be interested in
A 121 turn 121 turn circular coil of radius 2.85 cm 2.85 cm is immersed in a uniform magnetic field that is perpendicular to the
sashaice [31]

Answer:

0.074 V

Explanation:

Parameters given:

Number of turns, N = 121

Radius of coil, r = 2.85 cm = 0.0285 m

Time interval, dt = 0.179 s

Initial magnetic field strength, Bin = 55.1 mT = 0.0551 T

Final magnetic field strength, Bfin = 97.9 mT = 0.0979 T

Change in magnetic field strength,

dB = Bfin - Bin

= 0.0979 - 0.0551

dB = 0.0428 T

The magnitude of the average induced EMF in the coil is given as:

|Eavg| = |-N * A * dB/dt|

Where A is the area of the coil = pi * r² = 3.142 * 0.0285² = 0.00255 m²

Therefore:

|Eavg| = |-121 * 0.00255 * (0.0428/0.179)|

|Eavg| = |-0.074| V

|Eavg| = 0.074 V

5 0
3 years ago
Read 2 more answers
How to find i1, i2,i3
MrRissso [65]

to find i1, i2, and i3 we need to find the total current.

to find the total current, you need to find the total resistance

you're already given the total voltage, Vs

to find Rtotal, start from the resistors furthest from the voltage source.

R3 and R4 are in series so

Rtotal= R3+R4 = 6+3 = 9 ohms

9 ohms is now in parallel with R2 so,

Rtotal= (\frac{1}{R3+R4}) ^{-1}\\ + (\frac{1}{R2}) ^{-1})^-1= (1/18)^-1 +( 1/9)^-1 = 6 ohms

6 ohms is in series with R1 so

Rtotal=  4+6=10 ohms

itotal= (\frac{Vtotal}{Rtotal})

= 120 v/10 ohms = 12 A

i total = i1 because all the current flows through it

i1= 12A

so the current splits into i2 and i3 and the amount of current that flows through a branch depends on the total resistance in each branch.

we already calculated the resistance in the R3+R4 & R2 branch as 6 ohms

since r3 and r4 are in series, the same current will flow through them

r3+r4 = 9 ohms

r2= 18 ohms

so the current in r2 will be half that of R3 & R4 (V=IR)

using the current divider rule

Ix = Itotal * \frac{Rtotal}{Rx}

i2= 12A x (6 ohms/18 ohms)= 4 A

i3= 12A x (6 ohms/9 ohms) = 8 ohms

6 0
4 years ago
.Find the uncertainty in a calculated electrical potential difference from the measurements of current and resistance. Electric
maw [93]

Answer:

a) The uncertainty in calculated V, ΔV = 25.3

b) The uncertainty in calculated v, Δv = 0.41 m/s

c) The uncertainty in calculated V, ΔV = 22.2 V

Explanation:

We'll use Upper-Lower Bounds method of uncertainty to estimate the uncertainties.

a) I = 5.1 A, ΔI = 0.3 A

I = (5.1 ± 0.3) A

R = 77.5 ohms, ΔR = 0.4 ohms

R = (77.5 ± 0.4) ohms

V = IR = 5.1 × 77.5 = 395.25 V

The lower bound for the voltage will be calculated using the lower bounds for the current and resistance

Iₗ = 5.1 - 0.3 = 4.8 A

Rₗ = 77.5 - 0.4 = 77.1 ohms

Vₗ = 4.8 × 77.1 = 370.08 V

The upper bound for the voltage will be calculated using the upper bounds for the current and resistance

Iᵤ = 5.1 + 0.3 = 5.4 A

Rᵤ = 77.5 + 0.4 = 77.9 ohms

Vᵤ = 5.4 × 77.9 = 420.66 V

The average of the differences from the mean voltage/true value is 25.3 V

V = 395.25 V, Δ = 25.3V

V = (395.25 ± 25.3) V

b) x = 2.9 m, Δx = 0.3 m

x = (2.9 ± 0.3) m

t = 4.4 s, Δt = 1.8 s

t = (4.4 ± 1.8) ohms

v = x/t = 2.9/4.4 = 0.659 m/s

The lower bound for average speed will be calculated using the lower bounds for distance and upper bounds for time.

xₗ = 2.9 - 0.3 = 2.6 m

tᵤ = 4.4 + 1.8 = 6.2 s

vₗ = 2.6/6.2 = 0.419 m/s

The upper bound for the average speed will be calculated using the upper bound for the distance and lower bound for time

xᵤ = 2.9 + 0.3 = 3.2 m

tₗ = 4.4 - 1.8 = 2.6 s

vᵤ = 3.2/2.6 = 1.231 m/s

The average of the differences from the mean average speed/true value is 0.41 m/s

v = 0.659 m/s, Δv = 0.41 m/s

v = (0.659 ± 0.41) m/s

c) ) I = 9.8 A, ΔI = 0.5 A

I = (9.8 ± 0.5) A

R = 40.5 ohms, ΔR = 0.2 ohms

R = (40.5 ± 0.2) ohms

V = IR = 9.8 × 40.5 = 396.9 V

The lower bound for the voltage will be calculated using the lower bounds for the current and resistance

Iₗ = 9.8 - 0.5 = 9.3 A

Rₗ = 40.5 - 0.2 = 40.3 ohms

Vₗ = 9.3 × 40.3 = 374.79 V

The upper bound for the voltage will be calculated using the upper bounds for the current and resistance

Iᵤ = 9.8 + 0.5 = 10.3 A

Rᵤ = 40.5 + 0.2 = 40.7 ohms

Vᵤ = 10.3 × 40.7 = 419.21 V

The average of the differences from the mean voltage/true value is 22.2 V

V = 396.9 V, Δ = 22.2 V

V = (396.9 ± 22.2) V

7 0
3 years ago
What's the difference and similarity between O2 and 2 O ?
nasty-shy [4]
O2 refers to two oxygen atoms bonded together, while 2 O refers to two oxygen atoms that are not bonded to each other. They both have two oxygen atoms, but in O2, the oxygen atoms are bonded, while in 2O, the atoms are not.
4 0
3 years ago
Which best describes the transition from gas to liquid? (2 points) Select one: a. Energy must be removed because particles in li
Alenkinab [10]

Which best describes the transition from gas to liquid?

gas is @ higher energy state than liq. so the transition must remove energy. so ans is  a. Energy must be removed because particles in liquid move more slowly.

8 0
3 years ago
Read 2 more answers
Other questions:
  • If a certain mass of mercury has a volume of 0.002 m^3 at a temperature of 20°c, what will be the volume at 50°c
    8·2 answers
  • A steam catapult launches a jet aircraft from the aircraft carrier john C. Stennis, giving it a peed of 175 mi/h in 2.50 . (a) F
    7·1 answer
  • In a television picture tube, electrons strike the screen after being accelerated from rest through a potential difference of 27
    11·1 answer
  • the pull of gravity on mars is 3.7m/s^2. if a astronaut on mars lifts a 10 kg rock 1 m off the ground, just to see whats under i
    13·1 answer
  • The absorption line spectrum shows what we see when we look at a hot light source (such as a star or light bulb) directly behind
    11·1 answer
  • The AB rope is fixed to the ground at its A end, and forms 30º with the vertical. Its other end is connected to two ropes by mea
    11·1 answer
  • Which law states that absolute zero cannot be reached?
    11·1 answer
  • Which statements best describe the second stage of cellular respiration? Check all that apply.
    13·2 answers
  • Relate the changes in molecular motion of particles as they change from solid to liquid to gas.
    7·1 answer
  • What important milestone occurred as a result of the Soviets' use of the R-7
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!