Answer:
2.453.
Explanation:
<em>∵ pH = - log[H₃O⁺]
</em>
[H₃O⁺] = 0.00352 M.
<em>∴ pH = - log[H₃O⁺] </em>= - log(0.00352) = <em>2.453.</em>
Answer:
5.63 g
Explanation:
Step 1: Write the balanced equation
CuBr₂(aq) + 2 AgCH₃CO₂(aq) ⇒ 2 AgBr(s) + Cu(CH₃CO₂)₂(aq)
Step 2: Calculate the reacting moles of copper (II) bromide
30.0 mL of 0.499 M CuBr₂ react. The reacting moles of CuBr₂ are:

Step 3: Calculate the moles formed of silver (I) bromide
The molar ratio of CuBr₂ to AgBr is 1:2. The moles formed of AgBr are 2/1 × 0.0150 mol = 0.0300 mol.
Step 4: Calculate the mass corresponding to 0.0300 mol of AgBr
The molar mass of AgBr is 187.77 g/mol.

Atoms of elements that are nonmetals tend to gain electrons and atoms of metallic elements tend to lose electrons. Metals have few electrons in their valence shells.
By losing those electrons, these metals achieve noble gas configuration and satisfy the octet rule.
Nonmetals that have close to 8 electrons in their valence shells readily accept electrons to achieve noble gas configuration.
An example is the reaction between calcium and oxygen. Calcium is a metal and has 2 valence electrons. Oxygen is a nonmetal and has 6 valence electrons.
Calcium gives up its two valence electrons and oxygen accepts them and an ionic bond is established resulting in the formation of anew compound namely calcium oxide.
Yes if you search up your subject or topic then put quizlet you’ll find your answer but you may need to login in to get the best experience of studying that you want