Answer:
1.15 M
Explanation:
Step 1: Given data
- Initial volume (V₁): 0.125 L
- Initial concentration (C₁): 3.00 M
- Final volume (V₂): 0.325 L
- Final concentration (C₂): ?
Step 2: Calculate the final concentration of the solution
We want to prepare a dilute solution from a concentrated one by adding water. We can calculate the concentration of the dilute solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 3.00 M × 0.125 L/0.325 L = 1.15 M
There are 17.97 moles of calcium chloride would react with 5. 99 moles of aluminum oxide .
The balanced chemical equation between reaction between calcium chloride and aluminum oxide is given as,
→ 
The molar ratio of above reaction is 3:1
It means 3 moles of calcium chloride is require to react one mole of aluminum oxide.
The number of moles of calcium chloride requires to react with 5. 99 moles of aluminum oxide = 3 × 5. 99 = 17.97 moles
The equation in which number of atoms of elements in reactant side is equal to the number of atoms of elements in product side is called balanced chemical equation .
learn more about calcium chloride
brainly.com/question/15296925
#SPJ4
Use the formula E=mc^2
energy given=<span>8.1 x 10^16 joules
</span>speed of <span>light = 3.00 × 10^8 m/s
</span>
plug in the values we'll get mass=<span>9.0 x 10-1 kg</span>
Because you are never adding more than the substances created, nor are you creating any, but should a chemical reaction take place you could see the liquid change form into a gaseous state and that would result a loss of the liquid volume.
So to wrap it all up you can’t have more liquids than what is already there but you could always lose some due to a chemical change, hence the reason it says an open flask, the chemical change would not be collected, mass would be lost