1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
7

Assume the space shuttle's main engines produce 764,576 newtons of thrust, and the shuttle has a mass of 78,018 kg. Why does the

shuttle need the two solid rocket boosters (in addition to the main engines)?
A. The boosters get the shuttle to space quicker.
B. The boosters are not needed at launch and are used later after achieving orbit.
C. The boosters are not needed, but they are there in the event one of the main engines does not work.
D. The thrust produced by the main engines equals the shuttle's weight, so the additional thrust from the boosters is needed to lift the shuttle off the launch pad.
Physics
1 answer:
Nady [450]3 years ago
4 0

Weight of anything = (mass) x (gravity in the place where the thing is)

Weight of anything on Earth = (mass) x (9.81 m/s²)

Weight of the shuttle = (78,018 kg) x (9.81 m/s²)

Weight of the shuttle, on Earth = 765,357 Newtons

Thrust of main engines = 764,576 Newtons

Are you starting to see the problem yet ?

The weight of the whole thing standing on the launch pad is 751 Newtons more than the maximum thrust of the main engines, and the engines can't lift it !  Even with all throttles wide open, the main engines alone would need about 175 <em>more</em> pounds of thrust to budge that load off the ground.  Even with the pedal to the metal, with flame and smoke belching out and covering the whole launch complex, the shuttle would just sit there and never leave the pad.

Well, no.  That's not exactly what would happen.  As the fuel in the main monster fuel tank is burned, the weight decreases.  So it would actually happen like this:  After the man announced "Zero !  We have ignition !  All engine running !", the ship would just sit there on the pad ... at first.  It would go nowhere and not even wiggle, <em>UNTIL</em> the first 175 pounds of fuel got burned without accomplishing anything.  The ship would then be 175 pounds lighter.  At that point, the weight would be exactly equal to the thrust of the main engines, and the vertical forces on the ship would be balanced.  Then, as MORE fuel continued to be wasted and the weight continued to decrease, the main engines could just begin to lift the ship off the pad.

So the correct answer is <em>choice-D</em> .  It tells the whole story, quicker than I can tell it.

You might be interested in
A politician running for office tells a crowd at a rally that the only way to keep the food chain safe is to stop allowing the g
olasank [31]

Answer:

B. No. He presented no scientific data to support his claim.

6 0
3 years ago
Safety devices used in electric circuit
Sergeu [11.5K]
Fuses is the answer!
6 0
3 years ago
How many seconds will it take for a satellite to travel 450,000 m at a rate of 120 m/s?
V125BC [204]
3750 seconds to travel that far
5 0
3 years ago
A nonconducting sphere of diameter 10.0 cm carries charge distributed uniformly inside with charge density of +5.50 µC/m3 . A pr
VLD [36.1K]

Answer:

t = 2.58*10^-6 s

Explanation:

For a nonconducting sphere you have that the value of the electric field, depends of the region:

rR:\\\\E=k\frac{Q}{r^2}

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

R: radius of the sphere = 10.0/2 = 5.0cm=0.005m

In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

F=m_pa\\\\qE=m_pa\\\\k\frac{qQ}{r^2}=m_pa\\\\a=k\frac{qQ}{m_pr^2}

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

Q=\rho V=(5.5*10^{-6}C/m^3)(\frac{4}{3}\pi(0.05m)^3)=2.87*10^{-9}C\\\\a=(8.98*10^9Nm^2/C^2)\frac{(1.6*10^{-19}C)(2.87*10^{-9}C)}{(1.67*10^{-27}kg)(0.05m)^2}=9.87*10^{11}\frac{m}{s^2}

with this values of a you can use the following formula:

a=\frac{v-v_o}{t}\\\\t=\frac{v-v_o}{a}=\frac{2550*10^3m/s-0m/s}{9.87*10^{11}m/s^2}=2.58*10^{-6}s

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s

3 0
2 years ago
What is the SI Unit for amplitude?
seropon [69]
This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
4 0
3 years ago
Other questions:
  • Calculations made using Celsius or Fahrenheit will not work for gas law calculations
    11·1 answer
  • A rotating fan completes 1200 revolutions every minute. consider the tip of a blade, at a radius of 0.19 m. through what distanc
    11·1 answer
  • What happens to a low-mass star after helium flash?
    6·1 answer
  • Bu uyguluma neden ingilizce oldu bilen varmı​
    13·1 answer
  • Name three (3) organelles that are found in plant cells that are not commonly found in animal cells?
    9·1 answer
  • A student is given a red and a blue liquid. The two samples of liquids are
    10·2 answers
  • In a skate park, you are trying to determine how to get the most speed at the bottom of the ramp. If the ramp is 4.5 m high, and
    6·1 answer
  • Two particles with oppositely signed charges nC are placed at two of the vertices of an equilateral triangle with side length 3
    13·1 answer
  • 1. thomas jefferson proposed using the length (l) of a simple pendulum whose period (t) was exactly 2 seconds as the definition
    7·1 answer
  • Given a circuit consisting of a DC battery of voltage 200 volts connected to a single resistor. If the electric current through
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!