Answer:
0.36 kg-m/s
Explanation:
Given that,
Mass of a ball, m = 0.06 kg
Initial velocity of the ball, u = 20 m/s
Final velocity of the ball, v = 26 m/s
We need to find the change in momentum of the tennis ball. It is equal to the final momentum minus initial momentum

So, the change in momentum of the ball is 0.36 kg-m/s.
Answer:
1.3 × 10⁸ e⁻
Explanation:
When a honeybee flies through the air, it develops a charge of +20 pC = + 20 × 10⁻¹² C. This is a consequence of losing electrons (negative charges). The charge of 1 mole of electrons is 96468 C (Faraday's constant). The moles of electrons representing 20 pC are:
20 × 10⁻¹² C × (1 mol e⁻/ 96468 C) = 2.1 × 10⁻¹⁶ mol e⁻
1 mole of electrons has 6.02 × 10²³ electrons (Avogadro's number). The electrons is 2.1 × 10⁻¹⁶ moles of electrons are:
2.1 × 10⁻¹⁶ mol e⁻ × (6.02 × 10²³ e⁻/ 1 mol e⁻) = 1.3 × 10⁸ e⁻
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Answer:
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.
Explanation:
As the complete question is not given here ,the table of data is missing which is as attached herewith.
From the maximized equation of the utility function it is evident that

For the equity, here as
is percentage of the equity which is to be calculated
is the Risk premium whose value as seen from the attached data for the period 1926-2015 is 8.30%
is the risk aversion factor which is given as 4.
is the standard deviation of the portfolio which from the data for the period 1926-2015 is 20.59
By substituting values.

So the weight of equity is 48.94%.
Now the weight of T bills is given as

So the weight of T-bills is 51.05%.
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.