Answer:

Explanation:
<u>1. Convert Atoms to Moles</u>
We must use Avogadro's Number: 6.022*10²³. This is the number of particles (atoms, molecules, ions, etc.) in 1 mole of a substance. In this case, the particles are atoms of helium. We can create a ratio.

Multiply by the given number of helium atoms.

Flip the fraction so the atoms of helium cancel.



<u>2. Convert Moles to Grams</u>
We must use the molar mass, which is found on the Periodic Table.
Use this as a ratio.

Multiply by the number of moles we calculated. The moles will then cancel.



<u>3. Round </u>
The original measurement has 3 significant figures (5, 5, and 0). Our answer must have the same. For the number we calculated, it is thousandth place. The 3 in the ten thousandth place tells us to leave the 5.

The mass is <u>0.365 grams of helium</u> so choice A is correct.
Answer:
It would move either left or right
Explanation: Taking assumption that,
Fructose + ATP fructose - 6 - phosphate + ADP (The standard free energy of hydrolysis for fructose-6-phosphate is - 15.9 kJ/mol.) 3 - phosphoglycerate + ATP 1,3 - bisphosphoglycerate + ADP (The standard free energy of hydrolysis for 1,3-bisphosphoglycerate is - 4 9.3 kJ/mol.) pyruvate + ATP phosphoenolpyruvate + ADP (The standard free energy of hydrolysis for phosphoenolpyruvate -is -61.9 kJ/mol.)
Sodium metal forms at the cathode
The first three are T I don’t know about the next two and the last one is T