Answer:
Tetrazine is a compound that consists of a six-membered aromatic ring containing four nitrogen atoms with the molecular formula C2H2N4.
(See the image)
Hope it helps!
Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Nitrogen is a diatomic molecule in the VA family on the periodic table. Nitrogen has five valence electrons, so it needs three more valence electrons to complete its octet. A nitrogen atom can fill its octet by sharing three electrons with another nitrogen atom, forming three covalent bonds, a so-called triple bond.
I'm frosty da showman