Answer:
Because they are extremely stable molecules, CFCs do not react easily with other chemicals in the lower atmosphere. ... Free chlorine atoms then react with ozone molecules, taking one oxygen atom to form chlorine monoxide and leaving an ordinary oxygen molecule.
Explanation:
<h3>
Answer:</h3>
P₂ = 0.67 atm
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Gas Laws</u>
Boyle's Law: P₁V₁ = P₂V₂
- P₁ is pressure 1
- V₁ is volume 1
- P₂ is pressure 2
- V₂ is volume 2
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] P₁ = 2.02 atm
[Given] V₁ = 4.0 L
[Given] V₂ = 12.0 L
[Solve] P₂
<u>Step 2: Solve</u>
- Substitute in variables [Boyle's Law]: (2.02 atm)(4.0 L) = P₂(12.0 L)
- [Pressure] Multiply: 8.08 atm · L = P₂(12.0 L)
- [Pressure] [Division Property of Equality] Isolate unknown: 0.673333 atm = P₂
- [Pressure] Rewrite: P₂ = 0.673333 atm
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our smallest.</em>
0.673333 atm ≈ 0.67 atm
Answer:
313, 6grams of H3PO4
Explanation:
We calculate the weight of 1 mol of H3PO4:
Weight 1 mol H3PO4= (Weight H)x3+ (Weight P)+(Weight 0)x4 =1gx3+31g+16gx4
Weight 1 mol H3PO4=98 g /mol
1 mol-----98 grams H3PO4
3,2mol----x= (3,2molx 98 grams H3PO4)/ 1mol=313,6 grams H3PO4
Answer:
because there more acid in diet cola
Answer:
a. 5.9 × 10⁻³ M/s
b. 0.012 M/s
Explanation:
Let's consider the following reaction.
2 N₂O(g) → 2 N₂(g) + O₂(g)
a.
Time (t): 12.0 s
Δn(O₂): 1.7 × 10⁻² mol
Volume (V): 0.240 L
We can find the average rate of the reaction over this time interval using the following expression.
r = Δn(O₂) / V × t
r = 1.7 × 10⁻² mol / 0.240 L × 12.0 s
r = 5.9 × 10⁻³ M/s
b. The molar ratio of N₂O to O₂ is 2:1. The rate of change of N₂O is:
5.9 × 10⁻³ mol O₂/L.s × (2 mol N₂O/1 mol O₂) = 0.012 M/s