Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg
X ray is one of the electromagnetic waves.
As per Clark Maxwell's electromagnetic theory, all the electromagnetic waves move with the velocity of light i.e c= 3×10^8 m/s
In case of electromagnetic waves,the electric field and magnetic field are perpendicular to each other as well as perpendicular to the direction of propagation.The electromagnetic waves exhibit the property of polarisation. Hence they are transverse in nature.
Hence the best statements about X- ray will be-
1- X -rays are electromagnetic waves
2-X-rays are transverse transverse waves
3- X- rays travel at the speed of light.
Answer:
a) v₂ = 4.2 m/s
b) v₂ = 5 m/s
Explanation:
a)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0.8 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 4.2 m/s</u>
<u></u>
b)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 5 m/s</u>
Answer:
The load that can be lifted is equal to the weight W = F2A1/A2
Explanation:
According to Pascal principle which states that the pressure applied to a liquid confined in a container will be transmitted equally to all other parts of the container.
Since pressure = Force/Area
The force F2 applied at one end of the piston will generate a pressure of F2/A2. This pressure generated will be transmitted to the other end of the piston of area A1 to lift the load through a distance.
The piston where the load is will experience an upward force F1 which is equal to Pressure × Area.
The pressure experienced by the load is applied by force F2.
Force on the load = (Pressure exerted by Force F2) × Area at the larger end A1
Force on the load = F2/A2 × A1
Since the load experiences a weight W
The weight will be equal to the force on the load which is to be lifted i.e W =Force on the load.
W = F2A1/A2
The load that can be lifted is equal to the weight W = F2A1/A2
Explanation:
p=mv
p=5.6×75
p= 420
<em>hope</em><em> it</em><em> was</em><em> helpful</em><em> to</em><em> you</em>