Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
Answer:
B) 12 m
Explanation:
Gravitational potential energy is:
PE = mgh
Given PE = 5997.6 J, and m = 51 kg:
5997.6 J = (51 kg) (9.8 m/s²) h
h = 12 m
Answer:
D,B,C,A,C
Explanation:
I believe that is the correct answers but it is unclear. I don't think the key for the second last question would let the current flowing so the bulb would be off.
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A = =
Momentum of block B = =
After collision:
Momentum of block A = =
Applying law of conservation of momentum to find momentum of block B after collision .
Plugging in the given values and simplifying.
Adding 200 to both sides.
∴
Momentum of block B after collision =
Answer: Its applied force and friction, The friction is the drag and the applied force is you pushing