To find the temperature in the problem, we apply the ideal gas law, PV=nRT where R=8.314 Pam3/mol K. Substituting the given, T= 153,000 Pa*1.5x10^-4 m3/ [(0.75 mol)(<span>8.314 Pam3/mol K)]. The temperature is equal to 3.68 kelvin. </span>
Yes, the atoms of the elements do have different masses but the same volume
<span>6.03 moles.
1 molecule of butane contains 4 carbon atoms and ten hydrogen atoms.
The molar mass is 4 times the atomic mass of carbon, 12 g/mol, plus 10 times the atomic weight of hydrogen, 1 g/mol.
Molar mass = 4 * 12 g/mol + 10 * 1 g/mol = 58 g/mol.
This means that 1 mole of butane has a mass of 58 g.
To figure out how many moles are in a sample of butane, divide the mass of sample in grams by 58 grams
Number of moles in sample = 350 g / 58 g/mol = 6.03 moles.</span>
Fluorine.
Because:- Atoms want to become stable, for an atom to become stable, they need 8 valence electrons. Since Fluorine has 7 valence electrons, it only needs one more electron to become stable and have an octet. An octet is when an atom/element has 8 valence electrons. Since Fluorine will need to gain an electron, it will have a negative charge, and become an anion.
Answer:
2 .Sulphurous acid
Explanation:
Sulphur dioxide can dissolve in water to form Sulfurous acid(H2SO3). sulphurous acid is weackly dibasic acid. sulphur dioxide is a major component of acid rain since it mixes with vapour in the atmosphere reacting to produce H2So4 .