Answer:
The coefficient of Ca(OH)2 is 1
Explanation:
Step 1: unbalanced equation
Ca(OH)2 + HNO3 → Ca(NO3)2 + H2O
Step 2: Balancing the equation
On the right side we have 2x N (in Ca(NO3)2 ) and 1x N on the left side (in HNO3). To balance the amount of N on both sides, we have to multiply HNO3 by 2.
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + H2O
On the left side we have 4x H (2xH in Ca(OH)2 and 2x H in HNO3), on the right side we have 2x H (in H2O). To balance the amount of H on both sides, we have to multiply H2O on the right side, by 2.
Now the equationis balanced.
Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O
The coefficient of Ca(OH)2 is 1
Answer: 6
Explanation:
1) The structure shown is:
3CH₃CH₂O
2) The molecule is CH₃CH₂O. The chemical formula is CH₃CH₂O. The subscripts indicate the number of atoms of the corresponding atom in each molecule.
Then, there are 1 + 1 = 2 atoms of C, 3+ 2 = 5 atoms of H, and 1 atom of O.
3) The number in front of the molecule is the coefficient. It is 3, and it tells the number of molecules.
So, there are 3 molecules, which means that you have 3 times a many atoms as calculated previously.
That is 3×2 = 6 atoms of C, 3 × 5 = 15 atoms of H, and 3 × 1 = 3 atoms of O.
Then, the number of atoms of carbon (C) in 3 molecules is 6
Answer:
Ionic substance
Explanation:
An ionic substance is formed when oppositely charged ions link up to form an infinitely large lattice structure that can only be described in terms of unit cells.
Ionic substances may consist of billions of oppositely charged ions. Ionic substances are hard, have high melting and boiling points and do not conduct electricity in the solid state because the ions are not free in the solid state.
However, in solution or molten state, the substance conducts electricity since the ions which are the charge carriers are now mobile.
Answer:
The correct answer is 169.56 g/mol.
Explanation:
Based on the given information, the mass of Ag deposited is 1.24 g, and the mass of unknown metal X deposited in another cell is 0.650 g. The number of moles of electrons can be determined as,
= 1.24 g Ag * 1mol Ag/107.87 g/mol Ag * 1 mol electron/1 mol Ag ( the molecular mass of Ag is 107.87 g/mol)
= 0.0115 mole of electron
The half cell reaction for the metal X is,
X^3+ (aq) + 3e- = X (s)
From the reaction, it came out that 3 faraday will reduce one mole of X^3+.
The molar mass of X will be,
= 0.650 g/0.0115 *3 mol electron/1 mol
= 56.52 * 3
= 169.56 g/mol
Explanation:
first of all open the menu