The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
- What is an electric generator?
- An electric generator is physically equivalent to an electric motor. but it converts mechanical energy into electrical energy.
- The electrical field generated is dependent on the inclination of the wire with respect to magnetic field lines, and this inclination changes over time,
because of that she will experience a varying electrical field, and thus a varying electric current will be zero.
The maximum positive value will occur when the wire is perpendicular to the magnetic field lines after one-fourth of rotation, and then zero.
Hence option C is correct.
The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
Learn more about electric generator here:
<u>brainly.com/question/12296668</u>
<u />
#SPJ4
You can find the mass of an atom by adding the number of protons and neutrons. In this case the atom has 2 protons and 3 neutrons so the mass is 5.
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.
Answer:
Minimum number of photons required is 1.35 x 10⁵
Explanation:
Given:
Wavelength of the light, λ = 850 nm = 850 x 10⁻⁹ m
Energy of one photon is given by the relation :
....(1)
Here h is Planck's constant and c is speed of light.
Let N be the minimum number of photons needed for triggering receptor.
Minimum energy required for triggering receptor, E₁ = 3.15 x 10⁻¹⁴ J
According to the problem, energy of N number of photons is equal to the energy required for triggering, that is,
E₁ = N x E
Put equation (1) in the above equation.

Substitute 3.15 x 10⁻¹⁴ J for E₁, 850 x 10⁻⁹ m for λ, 6.6 x 10⁻³⁴ J s for h and 3 x 10⁸ m/s for c in the above equation.

N = 1.35 x 10⁵
Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.