1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
3 years ago
13

As you found in Part A, your weight will be greater than normal when the elevator is moving upward with increasing speed. For wh

at other motion would your weight also be greater than your normal weight?
A) The elevator moves upward with constant velocity.
B) The elevator moves downward with constant velocity.
C) The elevator moves upward while slowing in speed.
D) The elevator moves downward while slowing in speed.
E) The elevator moves downward while increasing in speed.
Physics
1 answer:
shepuryov [24]3 years ago
4 0

Answer:

D) The elevator moves downward while slowing in speed.

Explanation:

The elevator is moving downward with decreasing speed , that means a force is acting on it in upward direction . So it has  an acceleration in upward direction . This type of movement is similar to motion with acceleration in upward direction.

In this case apparent weight will be greater.

You might be interested in
A flat sheet of ice has a thickness of 2.20 cm. It is on top of a flat sheet of crystalline quartz that has a thickness of 1.50
kolezko [41]

Answer:

Distance_{vaccum}=5.19cm

Explanation:

The speed of light in these mediums shall be lower than that in vacuum thus the total time light needs to cross both the media are calculated as under

Total time = Time taken through ice + Time taken through quartz

Time taken through ice = Thickness of ice / (speed of light in ice)

T_{ice}=\frac{2.20\times 10^{-2} \times \mu _{ice}}{V_{vaccum}}

T_{quartz}=\frac{1.50\times 10^{-2} \times \mu _{quartz}}{V_{vaccum}}

Thus in the same time the it would had covered a distance of

Distance_{vaccum}=Totaltime\times V_{vaccum}\\\\Distance_{vaccum}=10^{-2}[2.20\mu _{ice+1.50\mu _{quartz}}]

we have

\mu _{ice}=1.309\\\\\mu _{quartz}=1.542

Applying values we have

Distance_{vaccum}=10^{-2}[2.20\times 1.309+1.50\times 1.542]

Distance_{vaccum}=5.19cm

6 0
3 years ago
What form of matter is vapor?
katrin [286]
The form of matter that is vapor is a gas made of a substance that is usually liquid. 
Vapor is created when water, or some other liquid evaporates - meaning that it becomes so hot in a room, or wherever, that the liquid starts becoming gas. 
5 0
3 years ago
A current carrying wire is surrounded by a magnetic field. True or false
Aleks04 [339]
The answer is true because A current carrying wire is surrounded by magnetic field
7 0
3 years ago
One string of a certain musical instrument is 70.0 cm long and has a mass of 8.79 g . It is being played in a room where the spe
Svetach [21]

To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.

The linear mass density is given as,

\mu = \frac{m}{l}

\mu = \frac{8.79*10^{-3}}{70*10^{-2}}

\mu = 0.01255kg/m

The expression for the wavelength of the standing wave for the second overtone is

\lambda = \frac{2}{3} l

Replacing we have

\lambda = \frac{2}{3} (70*10^{-2})

\lambda = 0.466m

The frequency of the sound wave is

f_s = \frac{v}{\lambda_s}

f_s = \frac{344}{0.768}

f_s = 448Hz

Now the velocity of the wave would be

v = f_s \lambda

v = (448)(0.466)

v = 208.768m/s

The expression that relates the velocity of the wave, tension on the string and linear mass density is

v = \sqrt{\frac{T}{\mu}}

v^2 = \frac{T}{\mu}

T= \mu v^2

T = (0.01255kg/m)(208.768m/s)^2

T = 547N

The tension in the string is 547N

PART B) The relation between the fundamental frequency and the n^{th} harmonic frequency is

f_n = nf_1

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

n=3

Then,

f_3 = 3f_1

Rearranging to find the fundamental frequency

f_1 = \frac{f_3}{3}

f_1 = \frac{448Hz}{3}

f_1 = 149.9Hz

7 0
3 years ago
A simple experiment to measure the speed of sound doesn't involve a stopwatch. You can fill up along tube with water and put a t
Serhud [2]

Answer:

Explanation:

In order to answer this problem you have to know the depth of the column, we say R, this information is important because allows you to compute some harmonic of the tube. With this information you can compute the depth of the colum of air, by taking tino account that the new depth is R-L.

To find the fundamental mode you use:

f_n=\frac{nv_s}{4L}

n: mode of the sound

vs: sound speed

L: length of the column of air in the tube.

A) The fundamental mode id obtained for n=1:

f_1=\frac{v_s}{4L}

B) For the 3rd harmonic you have:

f_3=\frac{3v_s}{4L}

C) For the 2nd harmonic:

f_2=\frac{2v_s}{4L}

7 0
3 years ago
Other questions:
  • How many days for the moon to make a complete circuit around the Earth?<br>​
    12·2 answers
  • Rowan is walking in a shallow, clear bay, in still water just over her knees. When she looks down at her feet in the sand, she n
    10·1 answer
  • Need a little help here :(
    15·2 answers
  • List and Explain three ways study groups benefit your learning
    5·2 answers
  • What is role of skin in balancing body temperature during strenous excervise
    10·1 answer
  • What are volcanoes made of
    5·1 answer
  • A rope horizontally pulls a massive object lying on a surface with friction with a constant
    6·1 answer
  • Electromagnetism consists of what two processes?
    11·2 answers
  • A steel ball bearing is released from a height H and
    5·1 answer
  • What are two uses of total internal reflection? (GCSE Physics)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!