Answer:
B. 9.0 V
Explanation:
In parallel circuits, the voltage across each circuit is the same across each component, which is also equal to the total voltage of the power supplied. So in this case, the voltage across each resistor is still 9.0V.
The voltage only changes when the resistors can connected in series.
Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
D. velocity includes rate of change and direction
Answer:
It is called a mixture.
Explanation:
A mixture is a physical combination of 2 or more substances that are blended together without forming a new substance.
The easiest way to build a unit for energy is to remember that
'work' is energy, and
Work = (force) x (distance).
So energy is (unit of force) x (unit of distance)
[Energy] = (Newton) (meter) .
'Newton' itself is a combination of base units, so
energy is really
(kilogram-meter/sec²) (meter)
= kilogram-meter² / sec² .
That unit is so complicated that it's been given a special,
shorter name:
Joule .
It doesn't matter what kind of energy you're talking about.
Kinetic, potential, nuclear, electromagnetic, food, chemical,
muscle, wind, solar, steam ... they all boil down to Joules.
And if you generate, use, transfer, or consume 1 Joule of
energy every second, then we say that the 'power' is '1 watt'.