Answer:
Lever => 
Pulley => G = M x n (gravitational acceleration)
Wheel and axle => M.A = Radius of the wheel/radius of the axle = R/r
Inclined plane => It can be divided into two components: Fi = Fg * sinθ - parallel to inclined plane. Fn = Fg * cosθ - perpendicular one.
Answer:
The beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Explanation:
Given;
velocity of wave on the string with lower tension, v₁ = 35.2 m/s
the fundamental frequency of the string, F₁ = 258 Hz
<u>velocity of wave on the string with greater tension;</u>

where;
v₁ is the velocity of wave on the string with lower tension
T₁ is tension on the string
μ is mass per unit length

Where;
T₁ lower tension
T₂ greater tension
v₁ velocity of wave in string with lower tension
v₂ velocity of wave in string with greater tension
From the given question;
T₂ = 1.1 T₁

<u>Fundamental frequency of wave on the string with greater tension;</u>
<u />
<u />
Beat frequency = F₂ - F₁
= 270.6 - 258
= 12.6 Hz
Therefore, the beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz