An oxygen gas is a diatomic molecule which means that each molecule is composed of 2 atoms. Its symbol is O2.
Each oxygen atom has a molar mass of 16 g/mol. The molar mass of oxygen gas is calculated below,
molar mass = 2 x (16 g/mol) = 32 g/mol
To determine the number of moles in 52.5 grams of oxygen, divide the given mass by the calculated molar mass.
n = 52.5 grams / (32 gram/ mol)
n = 1.64 moles
Thus, there are 1.64 moles of oxygen gas.
Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:

b) Molar mass of fructose = 180.16 g/mol
Moles of fructose = 
Molar mass of water = 18.02 g/mol
Moles of water= 
Mole fraction of fructose in this solution:


Mole fraction of water = 
c) Average molar mass of of the solution:
=

d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:


Answer:
Gelada baboons plays a significant role.
Explanation:
The role of gelada baboons in their ecosystem is very important because they aerate the soil for plants which is necessary for good plant growth. These gelada baboons also helps in controlling the population of predator in their ecosystem which is very essential for the stability and equilibrium of the ecosystem so gelada baboons has a good effect on both plants and animals in their ecosystem.
Answer:
Explain some of the uses of metals based on their properties.
Explanation:
Metals have a shiny or metallic luster and are good conductors of heat and electricity, they can be bent and pounded in various shapes, so they can be used on cars, coins, some pipes, keys, and and a flag.