Answer with Explanation:
We are given that
Area of loop=

Resistance, R=
B=
We know that magnetic flux

Emf ,
Current, 
Current, 
Substitute t=0 s
Then, I=
=1.6 A
Substitute t=1 s
Then, I=
=0
Substitute
t=2 s
Current, I=
=1.6 A
Explanation:
c. if the vector is oriented at 0° from the X -axis.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.