Answer:
6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass
Explanation:
According to the Equation: E = mc²
where the mass, m = 0.71 * 10⁻¹⁶ kg
the speed of light, c = 3 * 10⁸ m/s
The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:
E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²
E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶
E = 0.71 * 9
E = 6.39 J
Detailed Explanation:
1) Rusting of Iron
4Fe + 3O2 + 2H2O -> 2Fe2O32H2O
Reactants :-
Fe = 4
O = 3 * 2 + 2 = 8
H = 2 * 2 = 4
Products :-
Fe = 2 * 2 = 4
O = 2 * 3 + 2 = 8
H = 2 * 2 = 4
2) Fermentation of sucrose…
C12H22O11 + H2O -> 4C2H5OH + 4CO2
Reactants :-
C = 12
H = 22 + 2 = 24
O = 11 + 1 = 12
Products :-
C = 4 * 2 + 4 = 12
H = 4 * 5 + 4 = 24
O = 4 * 2 + 4 = 12
Looking closely at the way I have taken the total number of elements on the reactants and products side, you can solve the rest.
All the Best!
Answer:
W = - 5.01 10¹⁰ J
Explanation:
Work is defined by the expression
W = ∫ F.dr
Where the blacks indicate vectors, in the case the force is radial and the distance is also radial, whereby the scalar producer is reduced to an ordinary product
W = ∫ F dr
W = G m₁m₂ ∫ 1 /r² dr
W = G m₁ m₂2(-1 / r)
We evaluate between the lower limits r = Re and upper r = ∞
W = G m₁m₂ (-1 / Re + 1 / ∞)
W = - G m₁ m₂ / Re
Let's calculate
W = - 6.67 10⁻¹¹ 800 5.98 10²⁴ / 6.37 10⁶
W = - 5.01 10¹⁰ J
Iron rich minerals in rock pointed in one direction the switch to the exact opposite direction. I'd say that what supports this idea is that Earth's magnetic field goes through pole reversals.<span>
</span>
There must be a conducting wire and electromotive force or free electrons