Answer:
<h3>The answer is 2.15 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
![a = \frac{f}{m} \\](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7Bf%7D%7Bm%7D%20%20%5C%5C%20)
where
f is the force
m is the mass
From the question we have
![a = \frac{750}{349} \\ = 2.14899713...](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7B750%7D%7B349%7D%20%20%5C%5C%20%20%3D%202.14899713...)
We have the final answer as
<h3>2.15 m/s²</h3>
Hope this helps you
Finding acceleration= final speed-initial speed/time taken (or A=V-U\T)
Finial speed= 27.8s
Initial speed= 0s
Time taken= 5.15
So..
27.8-0/5.15= 5.40m/s (rounded to two decimal places)
1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4