Answer:
correct option is b. 31.3 m/s
Explanation:
given data
artificial gravity a1 = 1 g
artificial gravity a2 = 2 g
diameter = 100 m
radius r= 50 m
speed v1 = 22.1 m/s
solution
As acceleration is ∝ v²
so we can say
.....................1
put here value
solve it
v2 =
× 22.1
v2 = 31.25 m/s
so correct option is b. 31.3 m/s
| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
Answer:
A related type of beta decay
Explanation:
Los Angeles lies on the Pacific plate, San Francisco lies on the North American plate, and the meeting point of the two cities is mathematically given as
T = 120 x 105 years
<h3>What is the meeting point of the two plates?</h3>
Generally, the equation for Distance is mathematically given as
D = Rate x Time
Therefore
T = D/R
T = (600 x 105) / 5
T = 120 x 105 years
In conclusion, the meeting point of the two plates will be
T = 120 x 105 years
Read more about Arithmetic
brainly.com/question/22568180
#SPJ1