To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
Answer:
23.67 km / hr
Explanation:
car travels 355 km (d)
duration = 15 hrs (t)
average speed formula = v = d / t
v = 355 km / 15 hr
v = 23.67 km / hr
<u>Yes. The speed of a rocket can exceed the exhaust speed of the fuel.</u>
How this is explained?
- The thrust of the rocket does not depend on the relative speed of the gases or the relative speed of the rocket.
- It depends on conservation of momentum.
What is conservation of momentum?
- Conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the total momentum of a system remains constant.
- Momentum is equal to the mass of an object multiplied by its velocity and is equivalent to the force required to bring the object to a stop in a unit length of time.
- For any array of several objects, the total momentum is the sum of the individual momenta.
- There is a peculiarity, however, in that momentum is a vector, involving both the direction and the magnitude of motion, so that the momenta of objects going in opposite directions can cancel to yield an overall sum of zero.
To know more about conservation of momentum, refer:
brainly.com/question/7538238
#SPJ4
Answer:
more speed means that an object has more energy, now if an object's place is something such as a hill, the potential energy will increase meaning an object will have more speed and acceleration. this is because you have the earth's gravity helping you out when the object goes downhill, giving it the higher potential energy
Gravitational potential energy =
(mass) x (gravity) x (height)
= (5.8 kg) x (9.8 m/s²) x (2.5 m)
= 142.1 Joules (C)