Answer:
<h3>The answer is 5.4 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>5.4 kg</h3>
Hope this helps you
Answer:
2,54 cm are equal to 1 inch
Explanation:
Doing the conversion:
![55[cm]*\frac{1[inch]}{2,54[cm]} =21,65[inch]](https://tex.z-dn.net/?f=55%5Bcm%5D%2A%5Cfrac%7B1%5Binch%5D%7D%7B2%2C54%5Bcm%5D%7D%20%3D21%2C65%5Binch%5D)
<span><span>fuel in a car's gas tank- Chemical Potential Energy</span><span>flash of lightning- Radiant Energy </span><span>storm clouds- Electric Energy</span><span>vocalist singing- Vibrational Energy </span><span>recording sound with a microphone- Electric Potential Energy</span><span>raindrops falling- Motion Energy
HOPE THIS HELPED :)
</span></span>
The time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
The given parameters;
<em>Mass of the first object, m1 = 1 kg</em>
<em>Mass of the second object, m2 = 5 kg</em>
The final velocity of the objects during the downward motion is calculated as follows;

The time of motion of the object from the given height is calculated as;

The time of motion of each object is independent of mass of the object.
Thus, the time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
Learn more about time of motion here: brainly.com/question/2364404
Answer:
a) In order to catch the ball at the level at which it is thrown in the direction of motion.
b)Speed of the receiver will be 7.52m/s
Explanation:
Calculating range,R= Vo^2Sin2theta/g
R= (20^2×Sin(2×30)/9.8 = 35.35m
Let receiver be(R-20) = 35.35-20= 15.35m
The horizontal component of the ball is:
Vox= Vocostheta= 20× cos30°
Vox= 17.32m/s
Time taken to coverR=35.35m with 17.32m/s will be:
t=R/Vox= 35.35/17.32
t= 2.04seconds
b)Speed required to cover 15.35m at 2.04seconds
Vxreciever= d/t = 15.35/2.04 = 7.52m/s