Answer:
C: Light travels from the Sun to the grass and is then reflected to your eyes.
Explanation:
Our eyes don't produce light but detect light (so answer A is not correct)
The grass doesn't produce light unless it is burning (discard answer B)
Answer C is the correct one.
The light we detect from the grass is not light bounced off the sky, it comes directly from the grass to your eyes (you are not looking at the sky when you see the grass) Discard answer D
Answer:
according to newtons second law of motion,
Force = mass * acceleration
The acceleration of the body is directly proportional to the net force acting on the body and inversely proportional to the mass of the body.
I. e mass and acceleration are directly proportional to each other.
Write each force in component form:
<em>v </em>₁ : 50 N due east → (50 N) <em>i</em>
<em>v</em> ₂ : 80 N at N 45° E → (80 N) (cos(45°) <em>i</em> + sin(45°) <em>j</em> ) ≈ (56.5 N) (<em>i</em> + <em>j</em> )
The resultant force is the sum of these two vectors:
<em>r</em> = <em>v </em>₁ + <em>v</em> ₂ ≈ (106.5 N) <em>i</em> + (56.5 N) <em>j</em>
Its magnitude is
|| <em>r</em> || = √[(106.5 N)² + (56.5 N)²] ≈ 121 N
and has direction <em>θ</em> such that
tan(<em>θ</em>) = (56.5 N) / (106.5 N) → <em>θ</em> ≈ 28.0°
i.e. a direction of about E 28.0° N. (Just to clear up any confusion, I mean 28.0° north of east, or 28.0° relative to the positive <em>x</em>-axis.)
Answer:
1.696 nm
Explanation:
For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,
dsinθ = mλ = (1)λ = λ
dsinθ = λ
sinθ = λ/d.
Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m
From trig ratios 1 + cot²θ = cosec²θ
1 + (1/tan²θ) = 1/(sin²θ)
substituting the values of sinθ and tanθ we have
1 + (D/w)² = (d/λ)²
(D/w)² = (d/λ)² - 1
(w/D)² = 1/[(d/λ)² - 1]
(w/D) = 1/√[(d/λ)² - 1]
w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹ = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.
w is also the distance from the center to the other principal maximum on the other side.
So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm
So, the minimum width of the screen must be 1.696 nm
Answer:
Explanation:
The momentum of the 25 kg mass is


If this whole momentum of the object is transferred to the 5.0 kg object then according to the law of conservation of momentum, the momentum of the 25.0 kg object must be transferred to the 5.0 kg object:


