Answer:
Keep temperature constant and increase the pressure of the reaction. The rate of reaction increases.
Explanation:
First of all, the question is asking us to design an experiment to investigate the effect of pressure on the rate of reaction hence the pressure can not be held constant since it is the variable under investigation. This eliminates the first option.
Secondly, increasing the pressure of the reaction means that particles of the gas collide more frequently leading to a greater number of effective collisions and a consequent increase in the rate of reaction according to the collision theory.
Hence the answer above.
2 high tides and 2 low tides. hope that helped
Answer:
chemistry - the science that studies the properties of substances and natural fenomens .
...........
Answer:
%
Explanation:
The ethanol combustion reaction is:
→
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

Dividing the previous equation by x:

We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

Calculate the number of moles of CO2 and water considering the same:


The total number of moles at the reactor output would be:

So, the oxygen mole fraction would be:
%
The answer is D, far apart and have weak attractive forces between them. The ideal gas means that the volume of molecule and the forces between them can be ignored.