We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer:
1.18×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms.
From the above concept, 1 mole of sodium also contains 6.02×10²³ atoms.
1 mole of sodium = 23 g.
Thus,
23 g of sodium contains 6.02×10²³ atoms.
Therefore, 4.5 g of sodium will contain = (4.5 × 6.02×10²³)/23 = 1.18×10²³ atoms.
From the above calculation,
4.5 g of sodium contains 1.18×10²³ atoms.
Answer:
acetic acid, sodium hydroxide
Explanation:
A strong acid is an acid that ionizes in water to give all its hydrogen ion. Weak acid only ionize to a certain degree. Acetic acid (CH3COOH) only ionize to give one hydrogen ion despite having other hydrogen atom. This account for its weak nature as an acid as shown below:
CH3COOH <=> H^+ + CH3COO^-
A strong base is a base that ionizes in water to give all it hydroxide ion. Sodium hydroxide(NaOH) ionizes to give all its hydroxide ions. This make it a strong base as shown below;
NaOH <=> Na^+ + OH^-
Reducing solid waste is reducing the amount of garbage that goes into our landfills. These are items we use each day, and then get rid of by putting them into the trash. Solid waste comes from homes, businesses and industries. If you want to reduce solid waste, you need to look at some of the following ways to reduce, reuse and recycle.