Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
<h3>What is total internal reflection?</h3>
The term total internal reflection occurs when light is moving from a denser to a less dense medium such as from glass to air. This phenomenon occurs at the interface between the two media.
There are two conditions necessary for total internal reflection and they are;
1) Light must travel from a denser to a less dense medium
2) The angle of incidence in the denser medium must be greater than the critical angle.
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
Learn more about total internal reflection:brainly.com/question/13088998
#SPJ1
Explanation:
It is given that,
Speed, v₁ = 7.7 m/s
We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :




So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.
The position compared to that of home is a reference to displacement, I believe.
Displacement = x total - x initial
So I believe the answer is 5 blocks due north (if you’re walking linearly from your home), unless the questions is referring to relative displacement, in which then you’d need to use the Pythagorean theorem to find the hypotenuse between both positions. And then you’d have to find theta for the degrees between the south direction and the other unmentioned direction. But I don’t think that’s the case.
Distance refers to x total and doesn’t care for direction, as this refers to a scalar quantity opposed to a vector. Thus the equation is just
d = x
So 8 blocks + 3 blocks = a distance of eleven blocks walked total
Im pretty sure its C- Wavelength