Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.
Answer:
97.5%
Explanation:
By the empirical rule (68-95-99.7),
- 68% of data are within <em>μ </em>- <em>σ</em> and <em>μ </em>+ <em>σ</em>
- 95% of data are within <em>μ </em>- 2<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
- 99.7% of data are within <em>μ </em>- 3<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
<em>σ </em> and <em>μ</em> are the standard deviation and the mean respectively.
From the question,
<em>μ</em> = 7.2 cm
<em>σ</em> = 0.38 cm
7.96 = 7.2 + (<em>n</em> × 0.38)
<em>n</em> = 2
Hence, 7.96 represents <em>μ </em>+ 2<em>σ</em>.
P(X < <em>μ </em>+ 2<em>σ</em>) = P(X < <em>μ</em>) + P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>)
P(X < <em>μ</em>) is the percentage less than the mean = 50%.
P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>) is half of P(<em>μ </em>- 2<em>σ</em> < X < <em>μ </em>+ 2<em>σ</em>) = 95% ÷ 2 = 47.5%.
Considering this, for apples that are no more than 7.96 cm,
P(X < 7.96) = P(X < 7.2) + P(7.2 < X < 7.96) = 50% + 47.5% = 97.5%
<em />
Answer: Wet barometer - The tool works by measuring atmospheric pressure to predict incoming weather. Since the glass is only filled halfway with water, the other half is exposed to the atmosphere. When the outdoor atmospheric pressure rises, the pressure in the glass decreases, and causes the water to move down the spout.
Dry barometer - A Torricellian barometer (sometimes called a mercury barometer) is an inverted (upside-down) glass tube standing in a bath of mercury. Air pressure pushes down on the surface of the mercury, making some rise up the tube. The greater the air pressure, the higher the mercury rises.
I hope this helps!
The type of graph that would most appropriately display Sarah's data is a line graph.
<h3>What is a line graph?</h3>
A line graph, sometimes referred to as a line plot or a line chart, is a graph in which individual data points are connected by lines. A line graph shows numerical values over a predetermined period of time.
Line graphs are frequently used in finance to show the historical price movement of an asset or instrument. To monitor changes over both short and long time periods, line graphs are utilized. Line graphs can be used to compare changes for multiple groups over the same time period.
In this case, it should be noted that Sarah wants to compare the speed and the height. Therefore, the line graph and s appropriate.
Learn more about graph on:
brainly.com/question/19040584
#SPJ1
Answer:
for one they will stay there. And another thing it will do is collect rust pretty much destroying it.
Explanation: