1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.
Answer:
<h3>The answer is 0.59 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.59 m/s²</h3>
Hope this helps you
Answer:
Q=+100kj,w=-15kj,Q=100kj,w=-62kj
Explanation:
when energy is exerted into a system work done is equal to zero .hence the system does work to the surrounding.
Answer:
284.8 kgm/s
Explanation:
Impulse: This can be defined as the product of force and time of a body. The S.I unit of impulse is N.s mathematically.
Impulse = Force × time
Change in momentum: This is the product of the mass of a body and its change in velocity. The unit of change in momentum is kgm/s.
Mathematically,
momentum = mass×change in velocity
Deduction from newton's second law of motion,
Impulse = change in momentum
Therefore,
Change in Momentum = Force×time
ΔM = F×t................. Equation 1
Where F = force = 89 N, t =time = 3.2 s.
Substitute into equation 1
ΔM = 89×3.2
ΔM = 284.8 kgm/s
Thus the change in momentum = 284.8 kgm/s