<u>Given:</u>
Mass of MgBr2 = 0.500 g
<u>To determine:</u>
Number of anions in 0.500 g MgBr2
<u>Explanation:</u>
Molar mass of MgBr2 = 24 + 2 (80) = 184 g/mol
Moles of MgBr2 = 0.500 g/184 g.mol-1 = 0.00271 moles
Based on stoichiometry-
1 mole of MgBr2 has 1 mole of Mg2+ cations and 2 moles of Br- anions
Therefore, 0.00271 moles of MgBr2 will have: 2 * 0.00271 = 0.00542 moles of Br-
Now,
1 mole of Br- contains 6.023 * 10²³ anions
0.00542 moles of Br- contain: 0.00542 * 6.023*10²³ = 3.264*10²¹ anions
Ans: There are 3.264*10²¹ anions in 0.5 g of MgBr2
Answer:(4) ----accepts a proton
Explanation:
H2O water can produce both hydrogen and hydroxide ions
H2O --> H+ + OH-
According to the Bronsted-Lowry theory, it can be a proton donor and a proton acceptor.this means that It can donate a hydrogen ion to become its conjugate base, or can accept a hydrogen ion to form its conjugate acid,
When , a water molecule, H2O accepts a proton it will act as a Brønsted-Lowry base especially when dissolved in a strong acidic medium. for eg
HCl + H2O(l) → H3O+(aq) + Cl−(aq)
Here, Hydrochloric acid is a strong acid and ionizes completely in water, since it is more acidic than water, the water will act as a base.
<h2>Answer:</h2>
B) endothermic reaction.
<h2>Explanation:</h2>
Melting of ice is endothermic because it is taking heat from the environment, feeling cold, because it requires energy to break the ice bonds. It's also why you feel cold when wet it takes energy to evaporate water. The ice absorbs the energy from the environment. Its internal potential energy increases, therefore, it's endothermic. It also increases the entropy of reaction.
Answer: -
D. Network
Explanation: -
Diamond is an allotrope of carbon. In diamond each carbon atom makes four bonds to other carbon atoms.
They exist in tetrahedral shape.
Diamond has strong covalent bonds. They extend in all the three dimensions
Such covalent bonds are called network covalent bonds. They require significant amounts of energy to break.
I would be difficult to remove an electron from a Noble or Inert Gas (also known as the group 8 or 0 elements). This is because they all have filled outermost shells and as such the outermost shell would be held tightly to the nucleus and as such make it difficult to remove. Examples Helium, Neon, Argon, Xenon, Krypton and Radon