Answer:12.8 ft/s
Explanation:
Given
Speed of hoop 
height of top 
Initial energy at bottom is

Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling 



Energy required to reach at top


Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

Therefore



Answer:
a) transparent
b) transparent
c) opaque
Explanation:
In the first one, the light rays go completely through, so it is transparent.
The second one I'm not too sure about. It is refraction so it's going through a different material, but the fact that it went through makes me say transparent.
Last one, the light rays are reflecting off the surface so it's opaque.
Please feel free to correct me if I'm wrong. This is just my understanding
Answer:
coasting down hill on a bicycle
Explanation:
Coasting down the hill on a bicycle is a typical example of how kinetic energy is being transformed to potential energy in a system.
Kinetic energy is the energy due to the motion of a body, it can be derived using the expression below;
K.E =
m v²
Potential energy is the energy due to the position of a body. It can be derived using;
P.E = mgh
m is the mass
v is the velocity
g is the acceleration due to gravity
h is the height
Now, at the top of the hill, the potential energy is at the maximum. As the bicycle coasts down the potential energy is converted to kinetic energy.
The capacitor is used to store electric charge.That is what makes capacitors special. <span>
The charge that flows into the capacitor is stored on the plate of the capacitor that the source voltage is connected to. </span>When current flows into a capacitor, the charges get “stuck” on the plates because they can’t get past the insulating dielectric. One plate is positively charged and the other negatively <span>The stationary charges on these plates create an </span>electric field. <span>When charges group together on a capacitor like this, the cap is storing electric energy just as a battery might store chemical energy.</span>
Answer: it is very difficult to remove the inner electrons from an atom because of the strong electrostatic force of attraction by the nucleus. In contrast, it is very easy to remove the outer electrons from an atom because the electrostatic force of attraction from the nucleus is not strong enough to hold the outer electrons hence it is removed.