Answer:
S = 0.5 km
velocity of motorist = 42.857 km/h
Explanation:
given data
speed = 70 km/h
accelerates uniformly = 90 km/h
time = 8 s
overtakes motorist = 42 s
solution
we know initial velocity u1 of police = 0
final velocity u2 = 90 km/h = 25 mps
we apply here equation of motion
u2 = u1 + at
so acceleration a will be
a =
a = 3.125 m/s²
so
distance will be
S1 = 0.5 × a × t²
S1 = 100 m = 0.1 km
and
S2 = u2 × t
S2 = 25 × 16
S2 = 400 m = 0.4 km
so total distance travel by police
S = S1 + S2
S = 0.1 + 0.4
S = 0.5 km
and
when motorist travel with uniform velocity
than total time = 42 s
so velocity of motorist will be
velocity of motorist = 
velocity of motorist =
velocity of motorist = 42.857 km/h
I’m crying looking at that.
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s
External depreciation may be defined as a loss in value caused by an undesirable or hazardous influence offsite.
<h3>What is depreciation?</h3>
Depreciation may be defined as a situation when the financial value of an acquisition declines over time due to exploitation, fray, and incision, or obsolescence.
External depreciation may also be referred to as "economic obsolescence". It causes a negative influence on the financial value gradually.
Therefore, it is well described above.
To learn more about Depreciation, refer to the link:
brainly.com/question/1203926
#SPJ1