We can find the principal level or lower level
using Rydberg's formula:
1/w = R(1/L² - 1/U²)
<span>where:</span>
<span>w is the
wavelength (93.8 nm),</span>
L is the lower energy level (unknown)
U the upper energy level (n= 6)
R is Rydberg's constant (10,967,758
waves per meter)
Substituing known values into the equation:<span>
1/(9.38 * 10^-8 m.) = 10,967,758(1/L² - 1-36) </span>
Using the solver function of the calculator to
get for L:
L = 0.999 <span>
so L = 1.
<span>The lower level is 1 (the ground state).</span></span>
Radio waves infrared rays, visible light, ultraviolet rays, X-rays, and gamma rays are all types of electromagnetic radiation. Radio waves have the longest wavelength, and gamma rays have the shortest wavelength.
<span>spectroscopy,
</span><span>Some spectrometers work on things other than light. For example, a mass spectrometer takes a mixture of chemicals and separates them according to their weight. Other spectrometers measure invisible forms lof light like infrared or x-rays. The idea is always the same, though.
</span>Hope this helped!
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.230M 0M 0M
Δ[] -x +x +x
[]f 0.230-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .230 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.230-x ≈ 0.230
4.5x10^-4 = x^2/0.230
Then, we solve for x by first multiplying both sides by 0.230 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.01M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.01M/0.230M = .0434 or
≈4.34% dissociation.