You asked the question twice I answered it on the last one
Answer:
3.6μF
Explanation:
The charge on the capacitor is defined by the formula
q = CV
because the charge will be conserved
q₁ = C₁V₂
q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor and the voltage drop across the two capacitor will be the same
q = q₁ + q₂ = C₁V₂ + C₂V₂
CV = CV₂ + C₂V₂
CV - CV₂ = C₂V₂
C ( V - V₂) = C₂V₂
C ( V/ V₂ - V₂ /V₂) = C₂
C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF
<span>Answer:
The temperature doesn't affect the evaporation rate, but affects on how much of water a parcel of air can contain when saturated which is known by the absolute humidity. Hurricanes are usually happening when the temperature of the sea water west of the Cape Verde islands is over 27 degrees Celsius. If ahead of the path of a hurricane, the sea water temperature drops then it will be less moisture in the air and perhaps the hurricane will fade out. But it is not as simple. How strong a tropical storm is is relative to the difference of temperture between ground level and the top of the troposphere. The greater the difference, the faster the air will rise and the deeper the pressure will be, forcing surrounding air to rush in, thus forming a hurricane force wind. Then there is the fact that the wet adiabatic lapse rate is about half that of dry air. It means that rising moist air cools down slower and therefore rises higher. Hence water is the true fuel of bad weather. But it can't be isolated from the fact that the difference of temperature must be great too. What we often forget is that the tropopause (the border to the stratosphere) is much higher over the equator and therefore, much colder than e.g. the poles.</span>
Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Answer:
Our drinking water comes from lakes, rivers and groundwater. For most Americans, the water then flows from intake points to a treatment plant, a storage tank, and then to our houses through various pipe systems. A typical water treatment process.
Explanation: