Answer:
0.9104
Explanation:
Suitable technology can tell you the probability.
P(-1.5≤Z≤2) ≈ 0.9104
__
A phone app gives the probability as 0.9104426667829628.
Answer:
Output voltage equation is 
Explanation:
Given:
dc gain
dB
Input signal 
Now convert gain,

DC gain at frequency
is given by,



At zero frequency above equation is written as,


Now we write output voltage as input voltage,

Therefore, output voltage equation is 
Answer:
Recognize that there is a moral dilemma.
Determine the actor. ...
Gather the relevant facts. ...
Test for right versus wrong issues. ...
Test for right versus right paradigms. ...
Apply the resolution principles. ...
Investigate the trilemma options. ...
Make the decision.
Answer:
<em> - 14.943 W/m^2K ( negative sign indicates cooling ) </em>
Explanation:
Given data:
Area of FPC = 4 m^2
temp of water = 60°C
flow rate = 0.06 l/s
ambient temperature = 8°C
exit temperature = 49°C
<u>Calculate the overall heat loss coefficient </u>
Note : heat lost by water = heat loss through convection
m*Cp*dT = h*A * ( T - To )
∴ dT / T - To = h*A / m*Cp ( integrate the relation )
In (
) = h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )
In ( 41 / 52 ) = 0.0159*h
hence h = - 0.2376 / 0.0159
= - 14.943 W/m^2K ( heat loss coefficient )
Answer:
There is 0.466 KW required to operate this air-conditioning system
Explanation:
<u>Step 1:</u> Data given
Heat transfer rate of the house = Ql = 755 kJ/min
House temperature = Th = 24°C = 24 +273 = 297 Kelvin
Outdoor temperature = To = 35 °C = 35 + 273 = 308 Kelvin
<u>Step 2: </u> Calculate the coefficient of performance o reversed carnot air-conditioner working between the specified temperature limits.
COPr,c = 1 / ((To/Th) - 1)
COPr,c = 1 /(( 308/297) - 1)
COPr,c = 1/ 0.037
COPr,c = 27
<u>Step 3:</u> The power input cna be given as followed:
Wnet,in = Ql / COPr,max
Wnet, in = 755 / 27
Wnet,in = 27.963 kJ/min
Win = 27.963 * 1 KW/60kJ/min = 0.466 KW
There is 0.466 KW required to operate this air-conditioning system