1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
11

A single fixed pulley is used to lift a load of 400N by the application of an effort of 480N in 10s through a vertical height of

5m. Determine the V.R, M.A and efficiency of the machine.​
Engineering
1 answer:
Allushta [10]3 years ago
4 0

Answer:

(a) the velocity ratio of the machine (V.R) = 1

(b) The mechanical advantage of the machine (M.A) = 0.833

(c) The efficiency of the machine (E) = 83.3 %

Explanation:

Given;

load lifted by the pulley, L = 400 N

effort applied in lifting the, E = 480 N

distance moved by the effort, d = 5 m

(a) the velocity ratio of the machine (V.R);

since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.

V.R = distance moved by effort / distance moved by the load

V.R = 5/5 = 1

(b) The mechanical advantage of the machine (M.A);

M.A = L/E

M.A = 400 / 480

M.A = 0.833

(c) The efficiency of the machine (E);

E = \frac{M.A}{V.R} \times 100\%\\\\E = 0.833 \ \times \ 100\%\\\\ E = 83.3 \ \%

You might be interested in
Find the value of P(-1.5≤Z≤2)
Vladimir [108]

Answer:

  0.9104

Explanation:

Suitable technology can tell you the probability.

P(-1.5≤Z≤2) ≈ 0.9104

__

A phone app gives the probability as 0.9104426667829628.

7 0
3 years ago
You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
Vsevolod [243]

Answer:

Output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Explanation:

Given:

dc gain A = 23.6 dB

Input signal V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)

Now convert gain,

A = 10^{\frac{23.6}{20} } = 15.13

DC gain at frequency f = 0 is given by,

  A = \frac{V_{out} }{V_{in} }

V_{out} =AV_{in}

V_{out} = 15.13 \times   0.18 \cos (2\pi (57000)t +18.3)

At zero frequency above equation is written as,

V_{out} = 2.72 \times \cos 18.3

V_{out} = 2.72

Now we write output voltage as input voltage,

V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Therefore, output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

7 0
3 years ago
What should be your strongest tool be for gulding your ethical decisions making process
valkas [14]

Answer:

Recognize that there is a moral dilemma.

Determine the actor. ...

Gather the relevant facts. ...

Test for right versus wrong issues. ...

Test for right versus right paradigms. ...

Apply the resolution principles. ...

Investigate the trilemma options. ...

Make the decision.

7 0
2 years ago
An FPC 4 m2 in area is tested during the night to measure the overall heat loss coefficient. Water at 60 C circulates through th
sp2606 [1]

Answer:

<em> - 14.943 W/m^2K  ( negative sign indicates cooling ) </em>

Explanation:

Given data:

Area of FPC = 4 m^2

temp of water = 60°C

flow rate = 0.06 l/s

ambient temperature = 8°C

exit temperature = 49°C

<u>Calculate the overall heat loss coefficient </u>

Note : heat lost by water = heat loss through convection

m*Cp*dT  = h*A * ( T - To )

∴ dT / T - To = h*A / m*Cp  ( integrate the relation )

In ( \frac{49-8}{60-8} ) =  h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )

In ( 41 / 52 ) = 0.0159*h

hence h = - 0.2376 / 0.0159

              = - 14.943  W/m^2K  ( heat loss coefficient )

7 0
2 years ago
An air-conditioning system operating on the reversed Carnot cycle is required to transfer heat from a house at a rate of 755 kJ/
Lyrx [107]

Answer:

There is 0.466 KW required to operate this air-conditioning system

Explanation:

<u>Step 1:</u> Data given

Heat transfer rate of the house = Ql = 755 kJ/min

House temperature = Th = 24°C = 24 +273 = 297 Kelvin

Outdoor temperature = To = 35 °C = 35 + 273 = 308 Kelvin

<u>Step 2: </u> Calculate the coefficient of performance o reversed carnot air-conditioner working between the specified temperature limits.

COPr,c = 1 / ((To/Th) - 1)

COPr,c = 1 /(( 308/297) - 1)

COPr,c = 1/ 0.037

COPr,c = 27

<u>Step 3:</u> The power input cna be given as followed:

Wnet,in = Ql / COPr,max

Wnet, in = 755  / 27

Wnet,in = 27.963 kJ/min

Win = 27.963 * 1 KW/60kJ/min  = 0.466 KW

There is 0.466 KW required to operate this air-conditioning system

3 0
3 years ago
Other questions:
  • A hanging wire made of an alloy of nickel with diameter 0.19 cm is initially 2.8 m long. When a 59 kg mass is hung from it, the
    15·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • Find the inductive reactance per mile of a single-phase overhead transmission line operating at 60 Hz, given the conductors to b
    6·1 answer
  • Que rol tiene el ecosistema el patos
    15·1 answer
  • What is the uncertainty in position of an electron of an atom if there is t 2.0 x 10' msec uncertainty in its velocity? Use the
    12·1 answer
  • Digital leaders are people who __ others down a particular path.
    13·2 answers
  • When do you need to apply for program completion and review?
    11·1 answer
  • A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
    9·1 answer
  • Determine the resistance of 100m of copper cable whose cross-sectional area is 1.5mm2​
    6·1 answer
  • which acpi power state allows a system to start where it left off, but all other components are turned off? sleeping mechanical
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!