1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
13

During the first stage of a multistage rocket, a satellite is:

Physics
1 answer:
lianna [129]3 years ago
7 0
B. sent through the atmosphere 

You might be interested in
Two coaxial conducting cylindrical shells have equal and opposite charges. The inner shell has charge +q and an outer radius a,
Leviafan [203]

Answer:

\Delta V = \frac{q ln(\frac{b}{a})}{2\pi \epsilon_0 L}

Explanation:

As we know that the charge per unit length of the long cylinder is given as

\lambda = \frac{q}{L}

here we know that the electric field between two cylinders is given by

E = \frac{2k\lambda}{r}

now we know that electric potential and electric field is related to each other as

\Delta V = - \int E.dr

\Delta V = -\int_a^b (\frac{2k\lambda}{r})dr

\Delta V = -2k \lambda ln(\frac{b}{a})

\Delta V = \frac{\lambda ln(\frac{b}{a})}{2\pi \epsilon_0}

\Delta V = \frac{q ln(\frac{b}{a})}{2\pi \epsilon_0 L}

7 0
3 years ago
I need hellp with thisss plssss????????!!!!
Leto [7]

Answer:

The graph appears to be in error.

The actual figure appears to be a rhombus with sides of 5 and 15 with a height of 5

The work done (F * S) is the area of the rhombus

1/2 * (5 +15) * 5 = 50 J

8 0
2 years ago
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
3 years ago
What is true of both gravity and magnetism?
stira [4]

Explanation:

I want to say option B - Both forces can act without objects touching.

5 0
3 years ago
What is the energy of an electromagnetic wave that has a frequency of
sukhopar [10]

Answer:

Energy, \; E = 2.6504 * 10^{-34} \; Joules

Explanation:

Given the following data;

Frequency = 4.0 x 10⁹ Hz

Planck's constant, h = 6.626 x 10-34 J·s.

To find the energy of the electromagnetic wave;

Mathematically, the energy of an electromagnetic wave is given by the formula;

E = hf

Where;

E is the energy possessed by a wave.

h represents Planck's constant.

f is the frequency of a wave.

Substituting the values into the formula, we have;

Energy, \; E = 4.0 x 10^{9} * 6.626 x 10^{-34}

Energy, \; E = 2.6504 * 10^{-34} \; Joules

8 0
3 years ago
Other questions:
  • Explain why a stopclock will give a poor result in a instanteouse speed experiment
    10·1 answer
  • A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound
    9·1 answer
  • A student wished to add a new experiment to Chapter 2 by investigating whether the mass of water changes when it is heated. The
    6·1 answer
  • If your front lawn is 18.0 feet wide and 20.0 feet long, and each square foot of lawn accumulates 1050 new snowflakes every minu
    12·1 answer
  • For installation with a 25-kVA, 3-phase transformer, a 440-volt primary, and a 120-volt secondary. Calculate the maximum overcur
    12·1 answer
  • Which of the following correctly shows the chain of energy transfers that create surface currents on the ocean?
    11·1 answer
  • One advantage of the __________ model is quick recognition. A. prototype B. exemplar C. language D. concept Please select the be
    9·1 answer
  • What is the rate of 12 liters of water moving through a water hose in 4.0 minutes?
    10·1 answer
  • WILL UPVOTE! MULTIPLE CHOICE!
    14·1 answer
  • An egg is drown at a wall and breaks. A second egg is thrown at the same velocity and collides with a bed sheet. The egg does no
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!