Answer:
α = - 1.883 rev/min²
Explanation:
Given
ωin = 113 rev/min
ωfin = 0 rev/min
t = 1.0 h = 60 min
α = ?
we can use the following equation
ωfin = ωin + α*t ⇒ α = (ωfin - ωin) / t
⇒ α = (0 rev/min - 113 rev/min) / (60 min)
⇒ α = - 1.883 rev/min²
Answer:
B) Friction
Explanation:
Friction is a force that acts when an object is sliding along a surface. Microscopically, this force is due to the fact that the two surfaces are not perfectly smooth, but they have "imperfections" that cause a force that opposes the motion of the object.
For an object sliding on a flat surface, the force of friction has magnitude:

where
is the coefficient of kinetic friction
m is the mass of the object
g is the acceleration of gravity
The direction of the force of friction is always opposite to the direction of motion of the object.
In reality, friction also acts if the object is at rest and it is pushed by a force; in this case, we talk about static friction, and its magnitude is

where
is called coefficient of static friction, and it is generally larger than the coefficient of kinetic friction.
I am attaching the rest of your question so it makes sense,
<span>
Since lasers are made from stacking light waves that add together into a larger wave due to CONSTRUCTIVE INTERFERENCE.
</span>
Then, <span>light waves have that constructive interference (from question #1) because they are emitted IN PHASE with each other.
This means that they arrive at the same point of space with the same characteristics and their effects do not cancel each other, but the opposite, their intensity increases.</span>
Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :

Again using Snell's law for blue light as :

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
The distance covered is 25.9 m.
<h3>How deep is the cave?</h3>
We know that the speed of sound refers to the speed with which an sound moves in an object.
Given that;
speed of sound = 345m/s
Time taken = 0.15s
We know that;
v = 2d/t
v = speed of sound
d = distance
t = time taken
vt = 2d
d = vt/2
d = 345m/s * 0.15s/2
d = 25.9 m
Learn more about speed of sound:brainly.com/question/15137350
#SPJ1