Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024
Answer:
Here the source is moving away from the observer so frequency will be smaller than the actual frequency and since the speed is increasing so the frequency is decreasing with time so correct answer is
D) lower than the original pitch and decreasing as he falls.
Explanation:
As we know by the Doppler's effect of sound we have
so we will have

so here when source moves away from the observer with a some speed then the frequency of the sound observed by the observer is smaller than the actual frequency
Here we know that the speed of the source is increasing with time as the source is falling under gravity
So we can say that the pitch of the sound will decrease with time
Answer:
r = 20 m
Explanation:
The formula for the angular momentum of a rotating body is given as:
L = mvr
where,
L = Angular Momentum = 10000 kgm²/s
m = mass
v = speed = 2 m/s
r = radius of merry-go-round
Therefore,
10000 kg.m²/s = mr(2 m/s)
m r = (10000 kg.m²/s)/(2 m/s)
m r = 5000 kg.m ------------- equation 1
Now, the moment of inertia of a solid uniform disc about its axis through its center is given as:
I = (1/2) m r²
where,
I = moment of inertia = 50000 kg.m²
Therefore,
50000 kg.m² = (1/2)(m r)(r)
using equation 1, we get:
50000 kg.m² = (1/2)(5000 kg.m)(r)
(50000 kg.m²)/(2500 kg.m) = r
<u>r = 20 m</u>
Answer
given,
length of the swing = 26.2 m
inclined at an angle = 28°
let, the initial height of the Tarzan be h
h = L (1 - cos θ)
a) initial velocity v₁ = 0 m/s
final velocity of Tarzan = v_f
law of conservation of energy
PE_i + KE_i = PE_f + KE_f






= 7.75 m/s
the speed tarzan at the bottom of the swing
v_f = 7.75 m/s
b)initial speed of the = 3 m/s






v_f= 11.29 m/s
Choice-a is a very rubbery, imprecise, ambiguous, slippery statement. But it's probably less wrong than any of the other choices on the list.