Answer:
Final temperature, 
Explanation:
Given that,
Mass of silver ring, m = 4 g
Initial temperature, 
Heat released, Q = -18 J (as heat is released)
Specific heat capacity of silver, 
To find,
Final temperature
Solution,
The expression for the specific heat is given by :





So, the final temperature of silver is 21.85 degrees Celsius.
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
2000 nickels
Explanation:
One way to solve proportionality problems, direct and inverse: the simple 3 rule.
If the relationship between the magnitudes is direct (when one magnitude increases so does the other), the simple direct rule of three must be applied.
On the contrary, if the relationship between the magnitudes is inverse (when one magnitude increases the other decreases) the rule of three simple inverse applies.
The simple 3 rule is an operation that helps us quickly solve proportionality problems, both direct and inverse.
To make a simple rule of three we need 3 data: two magnitudes proportional to each other, and a third magnitude. From these, we will find out the fourth term of proportionality.
In the simple three rule, therefore, the proportionality relationship between two known values A and B is established, and knowing a third value C, a fourth value D is calculated.
A -> B
C -> D
Calculation
1 nickel --> 5 g
X? nickel --> 10000g
X = (10000 g * 1 nickel) / 5 g
X = 2000 nickels
Answer:
Cell Membrane
Explanation:
The cell membrane contains a phospholipid bilayer.
Answer:
c. The steady-state value of the current depends on the resistance of the resistor.
Explanation:
Since all the components are connected in series, when the switch is at first open, current will not flow round the circuit. As current needs to flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery.
But the moment the switch is closed, at the initial time t = 0, the current flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery. It then begins to increase at a rate that depends upon the value of the inductance of the inductor.