Answer:
2.09 atm
Explanation:
We can solve this problem by using the equation of state for an ideal gas, which relates the pressure, the volume and the temperature of an ideal gas:

where
p is the pressure of the gas
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
In this problem we have:
n = 0.65 mol is the number of moles of the gas
V = 8.0 L is the final volume of the gas
is the temperature of the gas
is the gas constant
Solving for p, we find the final pressure of the gas:

Answer:
Explanation:
To slow down this reaction, we can use any of the methods listed below:
- Increase the size of the magnesium by using solid lumps of the metal. This will take a much faster time to react than powered and granulated magnesium.
- Reduce the concentration of the acid.
- Let the reaction take place at a much lower temperature than that given.
These conditions will slow down a chemical reaction.
Answer:
Fe.
Explanation:
- The element which is oxidized is the element that losses electrons and its oxidation state be more positive.
- The element which is reduced is the element that gain electrons and its oxidation state be more negative.
<em> Fe goes from + 2 to +3, so, it is the element that is oxidized.</em>
<em></em>
Answer: compound
Explanation: because the hydrogen molecules and the oxygen molecules are chemically bonded together unlike in a mixture