Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
1 significant figure, because there is no decimal after the zero the zero doesn't count.
Answer:
Answer D => E°(Mg°/Cu⁺²) = 0.34 + 2.37 = 2.71v
Explanation:
(Oxidation) => Mg°(s) => Mg⁺²(aq) + 2e⁻ E°(Mg°/Mg⁺²) = -2.37 v
(Reduction) => Cu⁺²(aq) + 2e⁻ => Cu°(s) E°(Cu⁺²/Cu°) = +0.34 v
________________________________________________
Net Rxn => Mg°(s) + Cu⁺²(aq) => Mg⁺²(aq) + Cu°(s)
Std Cell Potential (25°C/1Atm) = E°(Redn) = E°(Oxidn) = +0.34v - (-2.37v)
= 0.34v + 2.37v = 2.72v
The balanced reaction that describes the reaction of chlorine gas and sodium iodide to produce elemental iodine and sodium chloride in aqueous solution is expressed Cl2+2NaI= I2 + 2NaCl. This kind of reaction is called single replacement reaction where the anion, in this case, is only replaced.
Answer:
1
Explanation:
An unknown element, X, is a nonmetal that contains seven valence electrons. Element X most likely forms <u>1 </u>covalent bond.
Nonmetals gain the electron to complete the octet and form anion. Consider the example of halogen.
When it combine with another halogen atom they form covalent bond. There are seven valance electrons in outer most orbital of halogen atom. By combining with other halogen atom they form one covalent bond and complete the octet.
For example:
Cl atom combine with other Cl atom and form Cl₂.