Answer:


Explanation:
= Area of section 1 = 
= Velocity of water at section 1 = 100 ft/min
= Specific volume at section 1 = 
= Density of fluid = 
= Area of section 2 = 
Mass flow rate is given by

The mass flow rate through the pipe is 
As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

The speed at section 2 is
.
Answer: 0.95 inches
Explanation:
A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.
The length= 64 inches
Ends are fixed Le= 64/2 = 32 inches
Factor Of Safety (FOS) = 3. 0
E= 10.6× 10^6 ps
σy= 4000ps
The square cross-section= ia^4/12
PE= π^2EI/Le^2
6500= 3.142^2 × 10^6 × a^4/12×32^2
a^4= 0.81 => a=0.81 inches => a=0.95 inches
Given σy= 4000ps
σallowable= σy/3= 40000/3= 13333. 33psi
Load acting= 6500
Area= a^2= 0.95 ×0.95= 0.9025
σactual=6500/0.9025
σ actual < σallowable
The dimension a= 0.95 inches
Ik i am thank you tho xoxo
Answer:
for 5.6V 9 turns, for 12.0V 19 turns, for 480V 755 turns
Explanation:
Vp/Vs= Np/Ns
Vp: Primary voltage
Vs: Secondary Voltage
Np: number of turns on primary side
Ns: number of turns on secondary side
for output 5.6V
140/5.6= 220/Ns
Ns= 8.8 or 9 Turns
for output 12.0V
140/12= 220/Ns
Ns= 18.9 or 19 turns
for output 480V
140/480= 220/Ns
Ns= 754.3 or 755 turns
Answer:
The red one
Explanation:
not acturlly a thing between them so i might be wrong